Package: lacunaritycovariance (via r-universe)

August 30, 2024

Type Package

Title Gliding Box Lacunarity and Other Metrics for 2D Random Closed Sets

Version 1.1-7

Date 2023-11-02

Author Kassel Liam Hingee

Maintainer Kassel Liam Hingee <kassel.hingee@gmail.com>

Description Functions for estimating the gliding box lacunarity (GBL), covariance, and pair-correlation of a random closed set (RACS) in 2D from a binary coverage map (e.g. presence-absence land cover maps). Contains a number of newly-developed covariance-based estimators of GBL (Hingee et al., 2019) $\langle \text{doi:10.1007/s13253-019-00351-9>}$ and balanced estimators, proposed by Picka (2000) <<http://www.jstor.org/stable/1428408>>, for covariance, centred covariance, and pair-correlation. Also contains methods for estimating contagion-like properties of RACS and simulating 2D Boolean models. Binary coverage maps are usually represented as raster images with pixel values of TRUE, FALSE or NA, with NA representing unobserved pixels. A demo for extracting such a binary map from a geospatial data format is provided. Binary maps may also be represented using polygonal sets as the foreground, however for most computations such maps are converted into raster images. The package is based on research conducted during the author's PhD studies.

License GPL $(>= 2)$

URL <https://github.com/kasselhingee/lacunaritycovariance>

Depends spatstat $(>= 2.0-0)$

Imports RcppRoll, spatstat.explore (>= 3.0-3), spatstat.geom, spatstat.random

Suggests cubature, sf, terra, testthat

ByteCompile true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3 Repository https://kasselhingee.r-universe.dev RemoteUrl https://github.com/kasselhingee/lacunaritycovariance RemoteRef HEAD RemoteSha 12c59da1134bef61fc3751bcbdedba6e65cf17b1

Contents

cencovariance *Centred covariance estimation*

Description

This function estimates the centred covariance of a stationary RACS. Available estimators are the plug-in moment centred covariance estimator, two 'balanced' estimators suggested by Picka (2000), and a third 'balanced' estimator inspired by one of Picka's pair-correlation estimators.

cencovariance 3

Usage

```
cencovariance(
 xi,
 obswin = NULL,
 setcov_boundarythresh = NULL,
 estimators = "all",
 drop = FALSE
)
cencovariance.cvchat(
  cvchat,
 cpp1 = NULL,phat = NULL,
  setcov_boundarythresh = NULL,
 estimators = "all",
 drop = FALSE
)
```
Arguments

Details

The centred covariance of a stationary RACS is

$$
\kappa(v) = C(v) - p^2.
$$

The estimators available are (see (Section 3.4, Hingee, 2019) for more information):

- • plugin the plug-in moment centred covariance estimator
- mattfeldt an estimator inspired by an 'intrinsically' balanced pair-correlation estimator from Picka (1997) that was later studied in an isotropic situation by Mattfeldt and Stoyan (Mattfeldt and Stoyan, 2000)
- pickaint Picka's 'intrinsically' balanced centred covariance estimator (Picka, 2000).
- pickaH Picka's 'additively' balanced centred covariance estimator (Picka, 2000).

Currently computes centred covariance using [racscovariance](#page-26-1).

Value

If drop = TRUE and only one estimator is requested then a im object containing the centred covariance estimate is returned. Otherwise a named imlist of im objects containing the centred covariance estimates for each requested estimator.

Functions

- cencovariance(): Centred covariance estimates from a binary map.
- cencovariance.cvchat(): Generates centred covariances estimates from a plug-in moment estimate of covariance, Picka's reduced window estimate of coverage probability, and the plug-in moment estimate of coverage probability. If these estimates already exist, then [cencovariance.cvchat](#page-1-1) saves significant computation time over cencovariance.

Author(s)

Kassel Liam Hingee

References

Hingee, K.L. (2019) *Spatial Statistics of Random Closed Sets for Earth Observations*. PhD: Perth, Western Australia: University of Western Australia. Submitted.

Mattfeldt, T. and Stoyan, D. (2000) Improved estimation of the pair correlation function of random sets. *Journal of Microscopy*, 200, 158-173.

Picka, J.D. (1997) *Variance-Reducing Modifications for Estimators of Dependence in Random Sets*. Ph.D.: Illinois, USA: The University of Chicago.

Picka, J.D. (2000) Variance reducing modifications for estimators of standardized moments of random sets. *Advances in Applied Probability*, 32, 682-700.

```
xi <- heather$coarse
obswin <- Frame(xi)
cencovariance(xi, obswin, estimators = "all")
```
Description

Calculates the disc-state contagion landscape metric as described in (Hingee, 2016; Hingee, 2019). The disc-state contagion landscape metric describes the entropy (mixing) between four possible states of a disc:

- 1. the disc is completely contained in Ξ
- 2. the disc does not intersect Ξ
- 3. the centre of the disc is in Ξ but the disc is not contained in Ξ
- 4. the disc intersects Ξ but the centre is outside Ξ

Disc-state contagion is a function of the disc radius.

The main difference to classical contagion (O'Neill, 1988) is that disc-state contagion is based on the spherical contact distribution instead of pixel neighbours. One impact of this design is that the distance with which to quantify the mixing between Ξ and the background may be chosen by the user by choosing the disc radius (for classical contagion this distance is fixed by the map resolution).

Note: to create fv objects the function copies about 20 lines of code from the **spatstat** collection of packages.

Usage

contagdiscstate(XiH, XicH, p, normalise = FALSE)

Arguments

Details

XiH should be a function of radius that contains (estimates of) the probability of a disc of radius r not intersecting Ξ if the disc's centre is not in Ξ

$$
\operatorname{Xil}(r) = P(B_r(x) \subseteq \Xi^c | x \in \Xi^c).
$$

Similarly XicH should be (an estimate of) the probability of a disc being fully contained in Ξ given its centre is in Ξ

$$
\operatorname{XicH}(r) \approx P(B_r(x) \subseteq \Xi | x \in \Xi).
$$

These can both be obtained using [Hest](#page-0-0) in spatstat. For XicH take care to apply Hest to the complement of Ξ with the observation window W.

If normalise is TRUE then the result is divided by $-2ln(2)$ and increased by 1 so that contagion will always be between 0 and 1.

Value

If XiH is an fv object then an fv object is returned. If XiH is a vector then the returned object is a vector the same length as XiH with each element corresponding to the contagion at each r value of XiH.

References

Hingee, K.L. (2016) Statistics for patch observations. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* pp. 235-242. Prague: ISPRS.

Hingee, K.L. (2019) *Spatial Statistics of Random Closed Sets for Earth Observations*. PhD: Perth, Western Australia: University of Western Australia. Submitted.

O'Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., et al. (1988) Indices of landscape pattern. *Landscape Ecology*, 1, 153-162.

Examples

```
xi <- heather$coarse
obswindow <- Frame(heather$coarse)
p <- coverageprob(xi, Frame(xi))
xiH <- Hest(xi, W = obswindow) #Sph. Contact Distrution Estimate
xicH \le Hest(complement.owin(xi), W = obswindow) #Conditional Core Prob. Estimate
```
contagion <- contagdiscstate(xiH, xicH, p)

contagpixelgrid *Pixel Adjacency Contagion*

Description

Function for calculating the classic pixel-adjacency contagion landscape metric from a binary map (O'Neill, 1988).

Usage

```
contagpixelgrid(xi, obswin, normalise = FALSE)
```
adjacency(xi, obswin = NULL)

contagpixelgrid 7

Arguments

Details

The unnormalised contagion landscape metric of categorical map is defined as

$$
\sum_{i} \sum_{j} Qijln(Qij),
$$

where Qij is the probability of randomly selected adjacent pixels being in class i and class j respectively, and m is the number of classes.

Here $m = 2$ as xi is a binary map and we have defined 'adjacent' pixels using the 4-neighbourhood regime.

Contagion is calculated from an adjacency matrix created using the function adjacency. The adjacency matrix is a 2 by 2 table containing the number of pairs of neighbouring pixels (where order matters) such that:

> Second pixel in xi Second pixel not in xi First pixel in xi First pixel not in xi -

Value

The computed pixel-adjacency contagion value. If normalise is TRUE then the value will be between 0 and 1. Otherwise the value will be negative.

Functions

- contagpixelgrid(): Pixel-adjacency contagion landscape metric of a binary map.
- adjacency(): Calculates the adjacency matrix used in the pixel contagion

Warning

Will fail if map is either all foreground or all background.

References

O'Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., et al. (1988) Indices of landscape pattern. *Landscape Ecology*, 1, 153-162.

Examples

```
xi <- heather$coarse
obswin \leq owin(xrange = c(0,7), yrange=c(0,16))
adjmat <- adjacency(xi,obswin)
pixeladjcontagion <- contagpixelgrid(xi,obswin)
```
coverageprob *Estimate the coverage probability of a stationary RACS*

Description

Computes the proportion of the observation window that is foreground, which is the usual estimate for the coverage probability of a stationary RACS from a binary map.

Usage

```
coverageprob(xi, obswin = NULL)coveragefrac(xi, obswin = NULL)
cp(xi, obswin = NULL)
```
Arguments

Details

The coverage probability of a stationary RACS is the probability that an arbitrary point is covered by the RACS. Given a binary map, xi, of a realisation of stationary RACS Ξ in a window W, this function computes the fraction of W covered by foreground, which is an estimate of the coverage probability. See (Chiu et al., 2013, Section 6.4.2) for more details.

If xi is an im object then xi must be an image of 1s, 0s and NAs representing inside the set, outside the set and outside the observation window respectively. coverageprob will not accept a obswin argument if xi is an im object.

Value

An estimate of the coverage probability

Author(s)

Kassel Liam Hingee

cppicka 9

References

Chiu, S.N., Stoyan, D., Kendall, W.S. and Mecke, J. (2013) Stochastic Geometry and Its Applications, 3rd ed. Chichester, United Kingdom: John Wiley & Sons.

Examples

```
xi <- heather$coarse
obswindow <- Frame(heather$coarse)
cp <- coverageprob(xi, obswindow)
```
cppicka *Picka's Reduced Window Estimator of Coverage Probability*

Description

This function provides estimates of coverage probability from subsets of the observation window, which are a key component of balanced estimators of covariance, centred covariance, paircorrelation and gliding box lacunarity.

Usage

cppicka(xi, obswin = NULL, setcov_boundarythresh = NULL)

Arguments

Details

The plug-in moment covariance estimator ([plugincvc](#page-25-1)) uses less of the observation window than the usual coverage probability estimators. Picka (1997, 2000) created new 'balanced' estimators of centred covariance and pair-correlation that accounted for this difference. A key component of Picka's estimators is an estimate of the coverage probability from the subregion of the binary map that is the intersection between W and W shifted by vector v , where W is the observation window $(p.~687,$ Picka, 2000). If we treat X and W as indicator functions representing the foreground and observation window respectively, this coverage probability estimator used by Picka is

$$
\frac{\int X(u)W(u)W(u-v)du}{\int W(u)W(u-v)du}.
$$

cppicka produces these estimates for an array of vectors v using fast Fourier transforms.

Value

An im object. Pixel values correspond to estimates of the coverage probability from the subregion of the observation window, W , that is the intersection of W and W shifted by vector v , where v is the pixel location.

Author(s)

Kassel Liam Hingee

References

Picka, J.D. (1997) *Variance-Reducing Modifications for Estimators of Dependence in Random Sets*. Ph.D.: Illinois, USA: The University of Chicago.

Picka, J.D. (2000) Variance reducing modifications for estimators of standardized moments of random sets. *Advances in Applied Probability*, 32, 682-700.

Examples

```
xi <- heather$coarse
obswindow <- Frame(heather$coarse)
cp <- coverageprob(xi, obswindow)
cpp1 <- cppicka(xi, obswindow)
```


gbl *Gliding box lacunarity estimation using all estimators*

Description

Estimates gliding box lacunarity (GBL) for square boxes using all estimators described in (Hingee et al., 2017). It calls the functions [gblc](#page-11-1), [gblg](#page-17-1), [gblcc](#page-13-1) and [gblemp](#page-15-1).

Usage

```
gbl(
 xi,
 boxwidths,
 estimators = c("GBLcc.pickaH"),
  obswin = NULL,includenormed = FALSE,
  setcov_boundarythresh = 1e-06
\mathcal{L}gbl.cvchat(
 boxwidths,
 estimators = c("GBLg.mattfeldt", "GBLg.pickaint", "GBLg.pickaH", "GBLcc.mattfeldt",
    "GBLcc.pickaint", "GBLc"),
  phat = NULL,
```

```
cvchat = NULL,
 cpp1 = NULL\lambda
```
Arguments

Details

As empirical GBL is one of the GBL estimators available through this function, non-square boxes are not allowed. To estimate GBL for non-square boxes use gblcc or gblg directly.

If xi is an owin object then obswin and xi are converted into an im object using [as.im](#page-0-0)

The estimators available are

- "GBLc" The unmodified (unbalanced) covariance estimator provided by [gblc](#page-11-1)
- "GBLemp" Empirical gliding box lacunarity (Allain and Cloitre, 1991). Calls [gblemp](#page-15-1)
- "GBLg.mattfeldt" See help for [gblg](#page-17-1) and [paircorr](#page-20-1)
- "GBLg.pickaint" See help for [gblg](#page-17-1) and [paircorr](#page-20-1)
- "GBLg.pickaH" See help for [gblg](#page-17-1) and [paircorr](#page-20-1)
- "GBLcc.mattfeldt" See help for [gblcc](#page-13-1)
- "GBLcc.pickaint" See help for [gblcc](#page-13-1)
- "GBLcc.pickaH" See help for [gblcc](#page-13-1)

 gbl 11

The default, GBLcc.pickaH, is a method based on centred covariance. Centred covariance approaches zero for large vectors, and are thus easier to integrate with the set covariance of the boxes. The set covariance of the boxes is computed empirically using **spatstat's** [setcov](#page-0-0) function, which converts B into a binary pixel mask using as, mask defaults. Computation speed can be increased by setting a small default number of pixels, npixel, in spatstat's global options (accessed through

[spatstat.options](#page-0-0)), however fewer pixels also decreases the accuracy of the GBL computation.

Value

An fv object.

Functions

- gbl(): computes GBL estimates from a binary map.
- gbl.cvchat(): computes covariance-based estimator of GBL from the plug-in moment estimate of covariance, Picka's reduced window coverage probability estimates (see [cppicka](#page-8-1)) and the usual coverage probability estimate, phat.

References

Allain, C. and Cloitre, M. (1991) Characterizing the lacunarity of random and deterministic fractal sets. *Physical Review A*, 44, 3552-3558.

Hingee K, Baddeley A, Caccetta P, Nair G (2019). Computation of lacunarity from covariance of spatial binary maps. *Journal of Agricultural, Biological and Environmental Statistics*, 24, 264-288. DOI: 10.1007/s13253-019-00351-9.

Examples

```
xi <- as.im(heather$coarse, value = TRUE,
            na.replace = FALSE)
boxwidths \leq seq(1, 10, by = 0.5)
# reduce resolution in setcov() for faster (less accurate) computation
oldopt <- spatstat.options()
spatstat.options("npixel" = 2^5)
gblests <- gbl(xi, boxwidths, estimators = "GBLcc.pickaH")
spatstat.options(oldopt)
```
gblc *Gliding box lacunarity estimator using plug-in moment covariance estimator*

Description

Can be used to estimate the gliding box lacunarity (GBL) of a stationary RACS from a binary map using the plug-in moment covariance covariance estimator (Hingee et al., 2019). It can also calculate the GBL of a RACS from a given covariance function and coverage probability.

gblc \Box 13

Usage

```
gblc(
  boxes,
  covariance = NULL,
  p = NULL,xlim = NULL,integrationMethod = "cubature"
)
```
Arguments

The integration method used by [innerprod.im\(\)](#page-18-1).

Details

Computes a numerical approximation of

$$
\int \gamma_B(v) C(v) \frac{dv}{(p^2|B|^2)}.
$$

where B is each of the sets (often called a box) specified by boxes, γ_B is the set covariance of B, $|B|$ is the area of B, p is the coverage probability of a stationary RACS, and $C(v)$ is the covariance of a stationary RACS. This can be used to compute the GBL from model parameters by passing gblc the covariance and coverage probability of the model.

The set covariance of B is computed empirically using **spatstat**'s [setcov](#page-0-0) function, which converts B into a binary pixel mask using as mask defaults. Computation speed can be increased by setting a small default number of pixels, npixel, in spatstat's global options (accessed through [spatstat.options](#page-0-0)), however fewer pixels also decreases the accuracy of the GBL computation.

The default method of integration for the above integral is [cubature::cubintegrate\(\)](#page-0-0) from the cubature package. The 'harmonisesum' method is known to produce numerical artefacts (Section 6.2 of (Hingee et al., 2019))

If a binary map is supplied then p and $C(v)$ are estimated using the usual coverage probability estimator and the plug-in moment covariance estimator, respectively (see [coverageprob](#page-7-1) and [plugincvc](#page-25-1)).

Value

If boxes is a list of numerical values then GBL is estimated for square boxes with side length given by boxes. The returned object is then an fv object containing estimates of GBL, box mass variance

and box mass mean. If boxes is a list of owin objects then gblc returns a dataframe with columns corresponding to estimates of GBL, box mass variance and box mass mean.

Note if NA or NaN values in the covariance object are used then gblc will return NA or NaN.

References

Hingee K, Baddeley A, Caccetta P, Nair G (2019). Computation of lacunarity from covariance of spatial binary maps. *Journal of Agricultural, Biological and Environmental Statistics*, 24, 264-288. DOI: 10.1007/s13253-019-00351-9.

Examples

```
xi <- heather$coarse
```

```
# reduce resolution in setcov() for faster (less accurate) computation
oldopt <- spatstat.options()
spatstat.options("npixel" = 2^5)
```

```
covar <- plugincvc(xi, Frame(xi))
p <- area(xi) / area(Frame(xi))
sidelengths \leq seq(0.3, 14, by = 1)
```

```
# compute GBL estimate for square boxes from estimated covariance
gblest <- gblc(sidelengths, covar, p)
```

```
# compute GBL estimate for boxes that are discs
discboxes <- lapply(sidelengths / 2, disc)
discgbls <- gblc(discboxes, covar, p)
```

```
# compute GBL estimates from binary map
xlim \leftarrow as.in(xi, na.replace = 0)gblest <- gblc(sidelengths, xiim = xiim)
```
spatstat.options(oldopt)

gblcc *Centred covariance based estimates of gliding box lacunarity*

Description

Estimates the gliding box lacunarity (GBL) of a stationary RACS using centred covariance estimates (Hingee et al., 2017). The centred covariance and coverage probability can be provided or estimated from binary map.

gblcc that the state of the

Usage

```
gblcc(
  boxes,
  cencovar = NULL,
  p = NULL,xlim = NULL,estimator = "pickaH",
  integrationMethod = "harmonisesum"
)
```
gblcc.inputcovar(boxes, cencovar, p, integrationMethod = "harmonisesum")

Arguments

Details

If we denote the estimated centred covariance by $\hat{\kappa}(v)$ and coverage probability \hat{p} then the estimate of GBL is

$$
1+\frac{1}{\hat{p}^2|B|^2}\int\gamma_B(v)\hat{\kappa}(v)dv,
$$

where B is each of the sets (often called a box) specified by boxes, γ_B is the set covariance of B, $|B|$ is the area of B, p is the coverage probability of a stationary RACS.

The set covariance of B is computed empirically using **spatstat**'s [setcov](#page-0-0) function, which converts B into a binary pixel mask using as mask defaults. Computation speed can be increased by setting a small default number of pixels, npixel, in spatstat's global options (accessed through [spatstat.options](#page-0-0)), however fewer pixels also decreases the accuracy of the GBL computation.

Value

If boxes is a list of numerical values then GBL is estimated for square boxes with side length given by boxes. The returned object is then an fv object containing estimates of GBL, box mass variance and box mass mean.

If boxes is a list of owin objects then gblcc returns a dataframe of with columns corresponding to estimates of GBL, box mass variance and box mass mean. Note if NA or NaN values in the covariance object are used then gblc will return NA or NaN instead of an GBL value.

Functions

• gblcc.inputcovar(): GBL estimates from already estimated centred covariance.

References

Hingee K, Baddeley A, Caccetta P, Nair G (2019). Computation of lacunarity from covariance of spatial binary maps. *Journal of Agricultural, Biological and Environmental Statistics*, 24, 264-288. DOI: 10.1007/s13253-019-00351-9.

Examples

```
xi <- heather$coarse
cencovar <- cencovariance(xi, obswin = Frame(xi), estimators = c("pickah"), drop = TRUE)
p <- area(xi) / area(Frame(xi))
sidelengths \leq seq(0.3, 14, by = 1)
# reduce resolution in setcov() for faster (less accurate) computation
oldopt <- spatstat.options()
spatstat.options("npixel" = 2^5)
# compute GBL estimate for square boxes from estimated centred covariance
gblccest <- gblcc(sidelengths, cencovar, p)
# compute GBL estimate for boxes that are discs
discboxes <- lapply(sidelengths / 2, disc)
discgbls <- gblcc(discboxes, cencovar, p)
# compute GBL estimates from binary map
xiim \leq as.im(xi, na.replace = 0)
gblccest <- gblcc(sidelengths, xiim = xiim, estimator = "pickaH")
spatstat.options(oldopt)
```
gblemp *Empirical Gliding Box Lacunarity*

Description

Calculates empirical gliding box lacunarity of a binary map, which was proposed by Allain and Cloitre (1991).

gblemp and the state of the

Usage

gblemp(boxwidths, xiim, obswin = Frame(xiim))

gbltrad(boxwidths, xiim, obswin = Frame(xiim))

Arguments

Details

Calculates empirical gliding box lacunarity (Allain and Cloitre, 1991) for a given range of square box sizes,

 $1 + Var(area(B.xi))/E[area(B.xi)]²$,

where B is a box that has a random location in the observation window and $area(B.xi)$ is the (random) area of the foreground in B . This is an estimate of the gliding box lacunarity of a RACS (Hingee et al., 2017).

The algorithm uses the pixel locations in xiim as an array of box centre locations to compute the mean and variance of the area in a random box of a given size. Locations where the box is not completely within the observation window are ignored.

Value

An fv object containing empirical GBL, variance of the area in the box and mean of the area in the box. The box widths (labelled s) are always odd multiples of the pixel width.

Functions

• gbltrad(): An alias of gblemp used in past versions of this package. This alias may be removed in future versions.

WARNING

The box side lengths are rounded such that they are an odd number of pixels across. gblemp uses the [roll_sum](#page-0-0) function in ReppRoll to operate, so ReppRoll must be installed to run gblemp.

References

Allain, C. and Cloitre, M. (1991) Characterizing the lacunarity of random and deterministic fractal sets. *Physical Review A*, 44, 3552-3558.

Hingee K, Baddeley A, Caccetta P, Nair G (2019). Computation of lacunarity from covariance of spatial binary maps. *Journal of Agricultural, Biological and Environmental Statistics*, 24, 264-288. DOI: 10.1007/s13253-019-00351-9.

Examples

```
xiim <- as.im(heather$coarse, na.replace = 0)
boxwidths \leq seq(0.2, 14, by = 0.2) #in units of xiim
gblest <- gblemp(boxwidths, xiim)
```


Pair-correlation based estimates of gliding box lacunarity

Description

Estimates the gliding box lacunarity (GBL) of a stationary RACS by estimating pair-correlation from a binary map (Hingee et al., 2017). It can also calculate the GBL of a RACS from a provided pair-correlation function.

Usage

gblg(boxes, paircorr = NULL, xiim = NULL, integrationMethod = "cubature")

Arguments

The integration method used by [innerprod.im\(\)](#page-18-1).

Details

If we denote the estimated pair-correlation by $\hat{g}(v)$ then the estimate of GBL is

$$
\frac{1}{|B|^2} \int \gamma_B(v) \hat{g}(v) dv,
$$

where B is each of the sets (often called a box) specified by boxes, γ_B is the set covariance of $B, |B|$ is the area of B, p is the coverage probability of a stationary RACS. This can be used to compute the GBL from model parameters by passing gblc the covariance and coverage probability of the model.

If the xiim argument to gblg is used then pair correlation is estimated from xiim using [paircorr](#page-20-1) and the pickaH estimator.

innerprod.im 19

The set covariance of B is computed empirically using **spatstat**'s [setcov](#page-0-0) function, which converts B into a binary pixel mask using as mask defaults. Computation speed can be increased by setting a small default number of pixels, npixel, in **spatstat**'s global options (accessed through [spatstat.options](#page-0-0)), however fewer pixels also decreases the accuracy of the GBL computation.

The default integration method for this function uses [cubature::cubintegrate\(\)](#page-0-0) from the cubature package. The 'harmonisesum' integration method is known to produce numerical artefacts (Section 6.2 of (Hingee et al., 2019))

Value

If boxes is a list of numerical values then GBL is estimated for square boxes with side length given by boxes. The returned object is then an fv object containing estimates of GBL. If boxes is a list of owin objects then gblg returns a dataframe of with columns corresponding to estimates of GBL. Note that if any values in the paircorr object needed for gblg are NA or NaN then gblg will return

References

NA or NaN, respectively.

Hingee K, Baddeley A, Caccetta P, Nair G (2019). Computation of lacunarity from covariance of spatial binary maps. *Journal of Agricultural, Biological and Environmental Statistics*, 24, 264-288. DOI: 10.1007/s13253-019-00351-9.

Examples

```
xi \leq as.im(heather$coarse, na.replace = 0, eps = 4 \star heather$coarse$xstep)
sidelengths \leq seq(0.3, 14, by = 3)
```

```
# reduce resolution in setcov() for faster (less accurate) computation
oldopt <- spatstat.options()
spatstat.options("npixel" = 2^4)
```

```
# compute GBL estimates from binary map
xlim \leftarrow as.in(xi, na.replace = 0)gblgest <- gblg(sidelengths, xiim = xiim)
```

```
spatstat.options(oldopt)
```


Description

Given two functions, f and g, that map from 2D space to 1D, and values of f and g represented as im objects then innerprod.im computes the (function space) inner product

$$
\int f(v)g(v)dv.
$$

Usage

```
innerprod.im(
 A,
 B,
  outsideA = NA,
 outsideB = NA,
 na.replace = TRUE,
 method = "cubature"
)
```
Arguments

Details

This function uses the package cubature to integrate the multiple of the two images. If cubature is not available then it harmonises the two input images, multiplies them together and returns the integral of the resulting image. outsideA and outsideB are used to determine result if the inner product requires values outside the domain of A or B. For example if outsideA=0 and the domain of B is larger than A's domain then the inner product can still be computed. However if A is NA outside (e.g. not known/not provided) and the domain of B is larger than A's domain then the inner product can not be computed and the returned value is NA

The harmonisesum method appears to perform well when used by $ghlcc()$, but produces numerical artefacts when used by $g \text{blc}()$ and $g \text{blg}()$. The cubature method takes longer to compute and is more accurate for functions (A or B) that are non-zero for large vectors. This makes it suitable for use by [gblc\(\)](#page-11-1) and [gblg\(\)](#page-17-1).

Value

If the inner product can be computed then returns $sum(A * B)$, otherwise returns NA.

```
xi <- heather$coarse
covar <- plugincvc(xi, Frame(xi))
B <- setcov(square(1))
innerprod.dim(covar, B, outsideB = 0)
```


Description

Tests whether xi is a binary map. The pixel values must be of logical type (TRUE, FALSE and NA only), or numerical (1, 0 or NA).

Usage

isbinarymap(xi, requiretrue = FALSE)

Arguments

Value

Logical value. TRUE if xi is a binary map. Otherwise FALSE. If requiretrue = TRUE and xi is not a binary map then an error will occur.

Examples

```
# The following return TRUE
isbinarymap(as.im(heather$coarse, na.value = 0))
isbinarymap(as.im(heather$coarse, na.value = FALSE, value = TRUE))
# The following return FALSE
isbinarymap(as.im(heather$coarse, na.value = 0.2, value = 1))
isbinarymap(as.im(heather$coarse, na.value = 0, value = 1.5))
```
paircorr *Balanced estimation of pair-correlation.*

Description

Estimates the pair-correlation function of a stationary RACS. The plug-in moment pair-correlation estimator and three 'balanced' estimators suggested by Picka (2000) are available.

Usage

```
paircorr(
 xi,
 obswin = NULL,
 setcov_boundarythresh = NULL,
 estimators = "all",
 drop = FALSE
)
paircorr.cvchat(
 cvchat,
 cpp1 = NULL,phat = NULL,estimators = "all",
 drop = FALSE
)
```
Arguments

Details

The pair-correlation of a stationary RACS is

$$
g(v) = C(v)/p^2.
$$

The estimators available are (see (Hingee, 2019) for more information):

paircorr and the contract of t

- plugin the plug-in moment pair-correlation estimator which is $Chat(v)/(phat^2)$, where *Chat* and *phat* are the plug-in moment estimate of covariance and the usual estimate of coverage probability, respectively.
- mattfeldt an 'intrinsically' balanced pair-correlation estimator suggested by Picka (1997). A similar isotropic pair-correlation estimator was later studied by Mattfeldt and Stoyan (2000).
- pickaint Picka's 'intrinsically' balanced pair-correlation estimator (Picka, 2000).
- pickaH Picka's 'additively' balanced pair-correlation estimator (Picka, 2000).

Value

If drop = TRUE and a single estimator is requested then an im object containing the pair-correlation estimate is returned. Otherwise a named imlist of im objects containing the pair-correlation estimates for each requested estimator.

Functions

- paircorr(): Estimates pair-correlation from a binary map.
- paircorr.cvchat(): Generates pair-correlation estimates from the plug-in moment estimates of covariance, Picka's reduced window estimate of coverage probability, and the coverage fraction (which is an unbiased estimate of the coverage probability). If these estimates already exist then paircorr.cvchat can save significant computation time.

Author(s)

Kassel Liam Hingee

References

Hingee, K.L. (2019) *Spatial Statistics of Random Closed Sets for Earth Observations*. PhD: Perth, Western Australia: University of Western Australia. Submitted.

Mattfeldt, T. and Stoyan, D. (2000) Improved estimation of the pair correlation function of random sets. *Journal of Microscopy*, 200, 158-173.

Picka, J.D. (1997) *Variance-Reducing Modifications for Estimators of Dependence in Random Sets*. Ph.D.: Illinois, USA: The University of Chicago.

Picka, J.D. (2000) Variance reducing modifications for estimators of standardized moments of random sets. *Advances in Applied Probability*, 32, 682-700.

```
xi \leq as.im(heather$coarse, na.replace = 0, eps = 4 \star heather$coarse$xstep)
```

```
# Estimate pair correlation from a binary map
pclns_directest <- paircorr(xi, estimators = "all")
```

```
phat <- coverageprob(xi)
cvchat <- plugincvc(xi)
cpp1 <- cppicka(xi)
```

```
# Compute pair correlation estimates from estimates covariance,
# coverage probability and Picka's reduced-window coverage probability.
pclns_fromcvc <- paircorr.cvchat(cvchat, cpp1, phat, estimators = "all")
```
placegrainsfromlib *Place grains randomly on a point pattern*

Description

Places subsets (grains) of two dimension space randomly on a given point pattern. This is useful for simulating germ-grain models such as Boolean models. Also described here are functions for computing summary properties of the a list of grains.

Usage

```
placegrainsfromlib(
  pp,
  grainlib,
 replace = TRUE,
 prob = NULL,
 w = NULL,xy = NULL)
meanarea.grainlib(
 grainlib,
 weights = rep(1/length(grainlib), length(grainlib))
\lambdameansetcov.grainlib(
  grainlib,
 weights = rep(1/length(grainlib), length(grainlib)),
 xy
\mathcal{L}
```

```
covar.grainlib(lambda, grainlib, weights, xy)
```
Arguments

placegrainsfromlib 25

Details

Germ-grain models have two components, a point process (called germs) and a process that creates grains that are centred on the germs. The point process of germs can be easily simulated using a number of spatstat functions (e.g. [rpoispp](#page-0-0) for Boolean models). To simulate a germ-grain model in a window W the germ process must be simulated in a larger window because grains centred outside W can intersect W. The result must then be cropped to W to achieve a realisation of the germ-grain process within W.

placegrainsfromlib randomly samples from a library of grains (grainlib) and places these on the points in pp. Sampling of the grain is independent of the location of the point in pp. It can be used to simulate the grain process in some germ-grain models.

Value

Returns an owin object.

Functions

- placegrainsfromlib(): Place grains randomly from a list of grains.
- meanarea.grainlib(): Compute mean area of a random grain given by the library
- meansetcov.grainlib(): Computes the mean of the set covariance of the grains in grainlib. xy is required because the set covariance function must rasterise the owin objects.
- covar.grainlib(): Compute the covariance of a Boolean model with random grain given by the library

Author(s)

Kassel Liam Hingee

```
# Simulate a germ-grain model where germs are a Poisson point process
# and grains are randomly selected from 3 different disc sizes.
grainlib \le solist(disc(radius = 1), disc(radius = 1.9), disc(radius = 0.2))
bufferdist <- 2 #chosen to be larger than the largest radius in library
w \le -\text{owin}(x\text{range} = c(0, 10), \text{grange} = c(0, 10))
```

```
# Simulate the germ process in the window plus a buffer region around window
pp \le - rpoispp(lambda = 0.1, win = dilation(w, bufferdist), nsim = 1, drop = TRUE)
xi_withbuffer <- placegrainsfromlib(pp, grainlib)
```

```
# Simulation of germ-grain model is the part within the window
xi <- intersect.owin(xi_withbuffer, w)
# Computation of properties from parameters
lambda <- 0.1
discr <- 10
weights <- c(0.9999, 0.0001)
grainlib \le solist(disc(r = discr), disc(r = 2*discr))
meanarea.grainlib(grainlib, weights)
truecovar <- covar.grainlib(lambda, grainlib, weights, xy = as.mask(w, eps = 2))
```


plugincvc *Plug-in moment covariance estimator*

Description

This function computes the plug-in moment covariance estimate of a stationary RACS from a binary map. For a stationary RACS, Ξ , the covariance for a vector v is the probability of two points separated by a vector v are covered by Ξ

$$
C(v) = P({x, x + v} \subseteq \Xi).
$$

Usage

```
plugincvc(xi, obswin = NULL, setcov_boundarythresh = NULL)
```
Arguments

Details

The plug-in moment covariance estimator is (Serra, 1982)

$$
\hat{C}(v) = \frac{\gamma_{W \cap X}(v)}{\gamma_W(v)}
$$

where $\gamma_W(v)$ is the set covariance of the observation window W and $\gamma_{W\cap X}(v)$ is the set covariance of the foreground within W. plugincvc uses Fourier transforms to calculate the set covariance (using the [setcov](#page-0-0) of the foreground and observation window. Vectors with small $\gamma_W(v)$ are eliminated using setcov_boundarythresh as division by small values is numerically unstable.

racscovariance 27

Value

A SpatStat im object containing the estimated covariance.

Author(s)

Kassel Liam Hingee

References

Serra, J.P. (1982) *Image Analysis and Mathematical Morphology*. London; New York: Academic Press.

Examples

```
xi <- as.im(heather$coarse, na.replace = 0)
covar <- plugincvc(xi)
```
racscovariance *Covariance Estimation*

Description

Estimates the covariance of a stationary RACS. The plug-in moment covariance estimator and newer balanced estimators based on (Picka, 1997; Picka, 2000) are available.

Usage

```
racscovariance(
  xi,
 obswin = NULL,
 setcov_boundarythresh = NULL,
 estimators = "all",
  drop = FALSE
)
racscovariance.cvchat(
  cvchat,
 cpp1 = NULL,phat = NULL,
 estimators = "all",
  drop = FALSE)
```
Arguments

Details

The covariance of a RACS is also known as the two-point coverage probability, and is closely related to the semivariogram. The covariance of a stationary RACS Ξ given a vector v is the probability that two points separated by a vector v are covered by Ξ .

Given a vector v , the plug-in moment covariance estimate from a binary map is the volume of the set of points, x, such that both x and $x + v$ are observed to be in the foreground relative to the volume of points, x, for which both x and $x + v$ are in the observation window (Hingee, 2019). Picka (1997, 2000) suggested a number of improvements to centred covariance estimation (see [cencovariance](#page-1-2)) that 'balanced' the data used to estimate covariance with the data used to estimate coverage probability. These lead to covariance estimators that give estimates for the covariance of Ξ that are a constant offset from covariance estimates for the complement of Ξ (note the constant offset depends on the coverage probability), which appears to avoid some surprising behaviour that the plug-in moment covariance estimator suffers (Hingee, 2019). These estimators are called pickaint and pickaH in this package.

Another improved estimator, inspired by an 'intrinsic modification' briefly mentioned by Picka (1997) for pair-correlation estimators, is also available. We have called this estimator mattfeldt as a similar isotropic estimator for pair-correlation was studied by Mattfeldt and Stoyan (2000).

The estimators available are (see (Hingee, 2019) for more information):

- plugin the plug-in moment covariance estimator
- mattfeldt an estimator inspired by an 'intrinsically' balanced pair-correlation estimator from Picka that was later studied in an isotropic situation by Mattfeldt and Stoyan (2000)

racscovariance 29

- pickaint an estimator inspired by an 'intrinsically' balanced centred covariance estimator from Picka (2000).
- pickaH an estimator inspired by the 'additively' balanced centred covariance estimator from Picka (2000).

Value

If drop = TRUE and only one estimator is requested then an im object containing the covariance estimate. Otherwise a named imlist of covariance estimates corresponding to each requested estimator.

Functions

- racscovariance(): Estimates covariance from a binary map.
- racscovariance.cvchat(): Computes covariance estimates from a plug-in moment estimate of covariance, Picka's reduced window estimate of coverage probability, and the usual estimate of coverage probability. If these estimates already exist then racscovariance.cvchat can save significant computation time.

Author(s)

Kassel Liam Hingee

References

Hingee, K.L. (2019) *Spatial Statistics of Random Closed Sets for Earth Observations*. PhD: Perth, Western Australia: University of Western Australia. Submitted.

Mattfeldt, T. and Stoyan, D. (2000) Improved estimation of the pair correlation function of random sets. *Journal of Microscopy*, 200, 158-173.

Picka, J.D. (1997) *Variance-Reducing Modifications for Estimators of Dependence in Random Sets*. Ph.D.: Illinois, USA: The University of Chicago.

Picka, J.D. (2000) Variance reducing modifications for estimators of standardized moments of random sets. *Advances in Applied Probability*, 32, 682-700.

```
xi <- heather$coarse
obswin <- Frame(xi)
# Estimate from a binary map
balancedcvchats_direct <- racscovariance(xi, obswin = obswin, estimators = "all")
phat <- coverageprob(xi, obswin = obswin)
cvchat <- plugincvc(xi, obswin)
cpp1 <- cppicka(xi, obswin = Frame(heather$coarse))
harmonised \leq harmonise.im(cvchat = cvchat, cpp1 = cpp1)
cvchat <- harmonised$cvchat
cpp1 <- harmonised$cpp1
```

```
# Compute balanced estimate of covariance from other estimates
balancedcvchats_fromplugincvc <- racscovariance.cvchat(cvchat,
                         cpp1, phat, estimators = "pickaH", drop = TRUE)
```
rbdd *Simulation of Boolean Model of Deterministic Discs*

Description

Functions for simulating a Boolean model with grains that are discs of fixed constant radius (the abbreviation 'bdd' is short for Boolean model with Deterministic Discs). A Boolean model is a two stage model, first the locations (called germs) of grains are randomly distributed according to a Poisson point process, then a random grain is placed on each germ independently. Introductions to Boolean models are available in many stochastic geometry books (Chiu et al., 2013). Also described here are functions for calculating the coverage probability, germ intensity, and covariance from model parameters for a Boolean model with deterministic discs.

Usage

```
rbdd(lambda, discr, window, seed = NULL)
bddcoverageprob(lambda, discr)
bddlambda(coverp, discr)
bdddiscr(coverp, lambda)
bddcovar.iso(r, lambda, discr)
bddcovar(xrange, yrange, eps, lambda, discr)
```
Arguments

rbdd 31

Value

See Functions section.

Functions

- rbdd(): Returns an owin that is a set generated by simulating a Boolean model with specified intensity and disc radius. The window information is not contained in this object. If the simulated set is empty then an empty owin object is returned. The point process of germs is generated using spatstat's [rpoispp](#page-0-0).
- bddcoverageprob(): Returns the true coverage probability given the intensity and disc radius.
- bddlambda(): Returns the germ intensity given coverage probability and disc radius.
- bdddiscr(): Returns the disc radius given coverage probability and germ intensity.
- bddcovar.iso(): Returns the true covariance of points separated by a distance r given the intensity, lambda and disc radius discr of the model.
- bddcovar(): Returns an image of the covariance as calculated from disc radius and intensity.

WARNING

The returned object of rbdd is an owin specifying the realisation of the Boolean model within the simulation window. The simulation window is not included, thus the object returned by rbdd can have much smaller extent than the simulation window (e.g. when the simulated set is empty).

References

Chiu, S.N., Stoyan, D., Kendall, W.S. and Mecke, J. (2013) *Stochastic Geometry and Its Applications*, 3rd ed. Chichester, United Kingdom: John Wiley & Sons.

```
# Simulate Boolean model with discs of radius 10.
# The coverage probability is very close to 0.5.
discr <- 10
w <- owin(xrange = c(0, 100), c(0, 100))
lambda <- 2.2064E-3
xi <- rbdd(lambda, discr, w)
# Compute properties of Boolean model from parameters
cp <- bddcoverageprob(lambda, discr)
cvc <- bddcovar(c(-10, 10), c(-10, 10), c(0.2, 0.2), lambda, discr)
```
Description

Functions for simulating a Boolean model with grains that are deterministic rectangles. A Boolean model is a two stage model, first the locations (called germs) of grains are randomly distributed according to a Poisson point process, then a random grain is placed on each germ independently. An introduction can be found in (Chiu et al., 2013). Also described in this help file are functions for calculating the coverage probability and covariance.

Usage

```
rbdr(lambda, grain, win, seed = NULL)
bdrcoverageprob(lambda, grain)
bdrcovar(lambda, grain, xy)
```
Arguments

Value

Depends on the function used (see Functions section).

Functions

- rbdr(): Returns an owin that is a set generated by simulating a Boolean model with a specified intensity and fixed rectangular grain. The window information is not contained in this object. If the simulated set is empty then an empty owin object is returned. The point process of germs is generated using spatstat's [rpoispp](#page-0-0).
- bdrcoverageprob(): Returns the true coverage probability given the intensity and grain.
- bdrcovar(): Returns an image of the covariance as calculated from disc radius and intensity.

WARNING

The returned object of rbdr is only the foreground of a binary map and thus can have much smaller extent than the simulation window (e.g. when the simulated set is empty).

32 rbdr

rblnd 33

References

Chiu, S.N., Stoyan, D., Kendall, W.S. and Mecke, J. (2013) *Stochastic Geometry and Its Applications*, 3rd ed. Chichester, United Kingdom: John Wiley & Sons.

Examples

```
grain \leq owin(xrange = c(-5, 5), yrange = c(-5, 5))
win <- owin(xrange = c(0, 100), c(0, 100))
lambda <- 4.2064E-3
xi <- rbdr(lambda, grain, win)
cp_theoretical <- bdrcoverageprob(lambda, grain)
xy \leftarrow as.max(dilationAny(win, win),eps = c(1, 1))cvc_theoretical <- bdrcovar(lambda, grain, xy)
```
rblnd *Simulate a Boolean model of discs with log normal disc radii*

Description

Simulates a Boolean model of discs with log normal radii by first simulating a Poisson point process and then placing discs of random radii around each point (the radii are generated using a log normal distribution).

Usage

```
rblnd(obswin, bufferdist, lambda, meanlog, sdlog, seed = NULL)
```
Arguments

Details

The point process needs to be simulated in a larger region than the desired observation window to account for the possibility of discs that intersect the observation window, but have germs outside the observation window.

The point process of germs is generated using spatstat's [rpoispp](#page-0-0).

Returns an owin object cropped to obswin.

Warning

A good choice of bufferdist is required and will be sensitive to the distribution of radii.

Examples

```
w \le -\text{ovin}(x\text{range} = c(0, 10), \text{grange} = c(0, 10))xi <- rblnd(w, 2, 0.3, -1, 0.2)
```
rbpto *Simulate Boolean Model with Grains Scaled According to a Truncated Pareto Distribution*

Description

Functions for simulation and computing theoretical values of a Boolean model with identically shaped grains with size given by a truncated Pareto distribution.

Usage

```
rbpto(lambda, grain, win, xm, alpha, lengthscales, seed = NULL, xy = NULL)
bpto.coverageprob(lambda, grain, xm, alpha, lengthscales = 1:500)
bpto.germintensity(coverp, grain, xm, alpha, lengthscales = 1:500)
bpto.covar(lambda, grain, xm, alpha, lengthscales = 1:500, xy)
```
Arguments

rbpto 35

Details

The parameters xm and alpha are such that the CDF of the Pareto distribution is $P(s \leq x)$ $1 - (xm/x)^{alpha}$. The distribution of grains scales is a step-function approximation to the CDF with steps at lengthscales.

Value

An owin object.

Functions

- rbpto(): Simulate Boolean model with grain size distributed according to a truncated Pareto distribution.
- bpto.coverageprob(): The coverage probability of the Boolean model with grain size distributed according to a truncated Pareto distribution.
- bpto.germintensity(): The germ intensity of the Boolean model with grain size distributed according to a truncated Pareto distribution.
- bpto.covar(): The covariance of the Boolean model with grain size distributed according to a truncated Pareto distribution. xy is required to specify resolution and offset of pixel grid.

```
lambda <- 0.2
win \leq square(r = 10)
grain \leq disc(r = 0.2)
xm \leq 0.01alpha <-2lengthscales \leq seq(1, 5, by = 0.1)
xi < - rbpto(lambda, grain, win, xm, alpha, lengthscales = lengthscales)
# Compute properties of the Boolean model from parameters
bpto.coverageprob(lambda, grain, xm, alpha, lengthscales = lengthscales)
covar <- bpto.covar(lambda, grain, xm, alpha, lengthscales = lengthscales,
                    xy = as.max(win, eps = 2))
```


Description

Estimates many second order properties of RACS, gliding box lacunarity, covariance, centred covariance, and pair-correlation. This can be faster than computing estimates of multiple second order properties separately as Fourier transforms of the binary map are not repeated.

Usage

```
secondorderprops(
  xiim,
 gblargs = NULL,
 covarargs = NULL,
  cencovarargs = NULL,
 paircorrargs = NULL,
  returnrotmean = FALSE
)
```
Arguments

Value

A named list of estimated properties. When multiple estimators have been requested for the same property, then the entry in the list is itself a list, with each entry corresponding to a different estimator.

summary.imlist 37

Warning

The user interface for this function is substantially more stretched the knowledge of the author, Kassel Hingee. Therefore, there is greater chance of encountering bugs. Kassel Hingee apologises for any bugs you encounter, and requests to be informed (thank you!).

Examples

```
xiim <- as.im(heather$coarse, value = TRUE,
              na.replace = FALSE)
gblargs = list(boxwidths = seq(1, 10, by = 1), estimators = c("GBlemp", "GBLc.pickalt"))covarargs = list(estimators = "all")
cencovarargs = list(estimators = "pickaH")
paircorrargs = list(estimators = "pickaH")
returnrotmean = TRUE
secondests <- secondorderprops(xiim,
   gblargs = gblargs,
   covarargs = covarargs,
   cencovarargs = cencovarargs,
   paircorrargs = paircorrargs,
   returnrotmean = FALSE)
```
summary.imlist *Pointwise summary of a list of* im *objects*

Description

This function assumes that im objects are each realisations of the same (stochastic) object. It returns pointwise summaries such as observed sample mean and sample variance.

Usage

```
## S3 method for class 'imlist'
summary(object, ..., harmonizeobject = TRUE)
```
Arguments

object A list of im objects ... Ignored harmonizeobject

> If TRUE (default) the pixel dimensions of the images will be harmonized. Otherwise the object will be tested for compatibility.

Value

A list im objects containing the pointwise mean, variance and maxima and minima.

Author(s)

Kassel Hingee

```
# reduce resolution in setcov() for faster (less accurate) computation
oldopt <- spatstat.options()
spatstat.options("npixel" = 2^4)
obspatterns <- replicate(3, rbdd(10, 0.05, window = square(1)), simplify = FALSE)
ims <- solapply(obspatterns,
function(x) racscovariance(x, obswin = square(1), estimators = "pickaH", drop = TRUE))
summ <- summary.imlist(ims, harmonizeobject = FALSE)
spatstat.options(oldopt)
```
Index

∗ datagen placegrainsfromlib, [24](#page-23-0) rbdd, [30](#page-29-0) rbdr, [32](#page-31-0) rblnd, [33](#page-32-0) rbpto, [34](#page-33-0) ∗ nonparametric cencovariance, [2](#page-1-0) contagdiscstate, [5](#page-4-0) coverageprob, [8](#page-7-0) cppicka, [9](#page-8-0) gblc, [12](#page-11-0) gblcc, [14](#page-13-0) gblemp, [16](#page-15-0) gblg, [18](#page-17-0) paircorr, [21](#page-20-0) placegrainsfromlib, [24](#page-23-0) plugincvc, [26](#page-25-0) racscovariance, [27](#page-26-0) ∗ spatial cencovariance, [2](#page-1-0) contagdiscstate, [5](#page-4-0) coverageprob, [8](#page-7-0) cppicka, [9](#page-8-0) gblc, [12](#page-11-0) gblcc, [14](#page-13-0) gblemp, [16](#page-15-0) gblg, [18](#page-17-0) paircorr, [21](#page-20-0) placegrainsfromlib, [24](#page-23-0) plugincvc, [26](#page-25-0) racscovariance, [27](#page-26-0) rbdd, [30](#page-29-0) rbdr, [32](#page-31-0) rblnd, [33](#page-32-0) rbpto, [34](#page-33-0) adjacency *(*contagpixelgrid*)*, [6](#page-5-0) as.im, *[11](#page-10-0)* as.mask, *[12,](#page-11-0) [13](#page-12-0)*, *[15](#page-14-0)*, *[19](#page-18-0)*, *[32](#page-31-0)*, *[35](#page-34-0)*

bddcovar *(*rbdd*)*, [30](#page-29-0) bddcoverageprob *(*rbdd*)*, [30](#page-29-0) bdddiscr *(*rbdd*)*, [30](#page-29-0) bddlambda *(*rbdd*)*, [30](#page-29-0) bdrcovar *(*rbdr*)*, [32](#page-31-0) bdrcoverageprob *(*rbdr*)*, [32](#page-31-0) bpto.covar *(*rbpto*)*, [34](#page-33-0) bpto.coverageprob *(*rbpto*)*, [34](#page-33-0) bpto.germintensity *(*rbpto*)*, [34](#page-33-0) cencovariance, [2,](#page-1-0) *[28](#page-27-0)* cencovariance.cvchat, *[4](#page-3-0)*, *[36](#page-35-0)* contagdiscstate, [5](#page-4-0) contagpixelgrid, [6](#page-5-0) covar.grainlib *(*placegrainsfromlib*)*, [24](#page-23-0) coveragefrac *(*coverageprob*)*, [8](#page-7-0) coverageprob, *[3](#page-2-0)*, *[5](#page-4-0)*, [8,](#page-7-0) *[11](#page-10-0)*, *[13](#page-12-0)*, *[22](#page-21-0)*, *[28](#page-27-0)* cp *(*coverageprob*)*, [8](#page-7-0) cppicka, *[3](#page-2-0)*, [9,](#page-8-0) *[11,](#page-10-0) [12](#page-11-0)*, *[22](#page-21-0)*, *[28](#page-27-0)* cubature::cubintegrate(), *[13](#page-12-0)*, *[19,](#page-18-0) [20](#page-19-0)* gbl, [10,](#page-9-0) *[36](#page-35-0)* gbl.cvchat, *[36](#page-35-0)* gblc, *[10,](#page-9-0) [11](#page-10-0)*, [12](#page-11-0) gblc(), *[20](#page-19-0)* gblcc, *[10,](#page-9-0) [11](#page-10-0)*, [14](#page-13-0) gblcc(), *[20](#page-19-0)* gblemp, *[10,](#page-9-0) [11](#page-10-0)*, [16,](#page-15-0) *[36](#page-35-0)* gblg, *[10,](#page-9-0) [11](#page-10-0)*, [18](#page-17-0) gblg(), *[20](#page-19-0)* gbltrad *(*gblemp*)*, [16](#page-15-0) Hest, *[5,](#page-4-0) [6](#page-5-0)* innerprod.im, [19](#page-18-0) innerprod.im(), *[13](#page-12-0)*, *[15](#page-14-0)*, *[18](#page-17-0)* isbinarymap, [21](#page-20-0) meanarea.grainlib *(*placegrainsfromlib*)*, [24](#page-23-0)

```
meansetcov.grainlib (placegrainsfromlib
)
, 24
paircorr
, 11
, 18
, 21
paircorr.cvchat
, 36
placegrainsfromlib
, 24
plugincvc
,
3
,
9
, 11
, 13
, 22
, 26
, 28
racscovariance
,
4
, 27
racscovariance.cvchat
, 36
rbdd
, 30
rbdr
, 32
rblnd
, 33
rbpto
, 34
roll_sum
, 17
rpoispp
, 25
, 31
–33
sample
, 24
secondorderprops
, 36
set.seed
, 30
, 32
–34
1213151926
solist
, 24
spatstat.geom::as.mask()
, 20
spatstat.options
, 12
, 13
, 15
, 19
```
summary.imlist , [37](#page-36-0)